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Large-scale and very-large-scale motions
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In the outer region of fully developed turbulent pipe flow very large-scale motions
reach wavelengths more than 8R–16R long (where R is the pipe radius), and large-scale
motions with wavelengths of 2R–3R occur throughout the layer. The very-large-scale
motions are energetic, typically containing half of the turbulent kinetic energy of
the streamwise component, and they are unexpectedly active, typically containing
more than half of the Reynolds shear stress. The spectra of the y-derivatives of the
Reynolds shear stress show that the very-large-scale motions contribute about the
same amount to the net Reynolds shear force, d−u′v′/dy, as the combination of all
smaller motions, including the large-scale motions and the main turbulent motions.
The main turbulent motions, defined as the motions small enough to be in a statistical
equilibrium (and hence smaller than the large-scale motions) contribute relatively little
to the Reynolds shear stress, but they constitute over half of the net Reynolds shear
force.

1. Introduction
One of the most fundamental and important characteristics of wall turbulence is

its strong inhomogeneity in length scales, ranging from the viscous length scales,
δν = ν/uτ at the wall, to the thickness of the wall layer, δ (which will be used to
represent the boundary thickness, δ, the pipe radius, R, or the channel half-height,
h). While the streaky structures at the wall have spacing approximately ∼ 100δν , on
average, they are also very long, often exceeding thousands of viscous length scales.
In the outer region the ‘large-scale motions’ (abbreviated to LSM and sometimes
called ‘δ-scale motions’) are known to take the form of turbulent bulges (Laufer &
Narayanan 1971) whose mean height is ∼ δ, mean streamwise length is ∼ 2δ, and mean
spanwise width is ∼ 1δ–1.5δ (Kovasznay, Kibens & Blackwelder 1970; Brown &
Thomas 1977; Cantwell 1981; Murlis, Tsai & Bradshaw 1982). The Kármán number
δ+ = δ/δν characterizes the ratio of the δ-scale motions to the near-wall motions. It
is also equal to the turbulent Reynolds number, Reτ = uτδ/ν, and since Reτ must be
large for turbulent flow, the range of scales is necessarily large.

In their pioneering studies, Townsend (1958) and Grant (1958) observed long tails
in the time-delayed auto-correlation functions of the streamwise velocity, u, that
were non-zero out to lengths as long as 1.4δ. They rightly inferred that large-scale
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motions existed, even close to the wall, and that they carried a significant fraction of
the turbulent kinetic energy. Various correlation studies (Favre, Gaviglio & Dumas
1967; Bradshaw 1967; Tritton 1967; Blackwelder & Kovasznay 1972) supported and
amplified their observations concerning the energy of the streamwise component in
what have become known as Townsend’s ‘large eddies’. Spectral studies provide a
more incisive evaluation of the distribution of energy in the large scales. Bullock,
Cooper & Abernathy (1978) convincingly showed that the energy contained in the
low-wavenumber (denoted by kx) region of the streamwise velocity spectrum was far
from being negligible. At the high-wavenumber end of the k−1

x range, they found a
peak in the pre-multiplied longitudinal spectrum that was located at a streamwise
wavelength λ+

x ∼ 600 in the buffer layer (superscript + denotes non-dimensionalization
by the viscous scales) and grew to λx ∼ R above y/R ∼ 0.6. Similar behaviour can be
seen in the spectra presented in Perry & Abell (1975). Perry, Henbest & Chong (1986)
found the that location of the corresponding spectral peak increased as λx ∼ 5y

between y+ = 100 and y/R = 0.3 and reached a value of λx ∼ 3R at greater distances
from the wall. In each case the area under the peaks indicated significant energy
content.

The turbulent bulges or ‘large-scale motions’ (LSMs) have often been interpreted to
account for the long correlation tails and the spectral peaks at the high-wavenumber
end of the k−1

x range, and therefore to be the ‘large eddies’ discussed by Townsend
(1961, 1976). Studies of the mean time between turbulent bursts, T , also associate
the bursting phenomena with a length scale of the order of the mean bulge length.
Laufer & Narayanan (1971) proposed outer scaling for the mean time, and they found
a value of U∞T/δ = 5 that was substantially independent of the Reynolds number
(U∞ is the free-stream velocity). The review by Bandyopadhyay (1982) concludes that
2.5 < U∞T/δ < 10, while the review by Fleischmann & Wallace (1984) used scaling
with the local mean velocity to reduce the spread to 1.5 < U∞T/δ < 3.5, very close
to the mean length of a turbulent bulge. Also, see the discussion of LSMs in Falco
(1991).

Fleischmann & Wallace (1984) also associated the large-scale motions in bounded
flows such as in pipes and channels with those in the turbulent boundary layer.
Using proper orthogonal decomposition (POD) on a domain 2.4h long in channel
flow to evaluate the energy distribution associated with two-dimensional patterns in
the streamwise-wall-normal plane, Liu, Adrian & Hanratty (2001) found over half of
the layer-averaged kinetic energy residing in the lowest-order modes. The 12 most
energetic modes had streamwise wavelengths of infinity, 2.4h and 1.2h, and heights
of h and roughly h/2 (the POD could not distinguish between the modes of length
2.4h and the longer modes that were aliased into the domain 2.4h long). Thus, the
energetic modes are not only long but also tall. That is they are large in y as well as
x. In addition to the large-scale motions of order δ, there is also substantial evidence
for the existence of very large scales with lengths ranging up to 10δ–50δ, containing
a significant fraction of the total kinetic energy (Priymak & Miyazaki 1994; Hites
1997; Jiménez 1998; Kim & Adrian 1999, hereafter referred to as KA99; Hunt &
Morrison 2000). These ‘very-large-scale motions’ (VLSM) or ‘super-δ scale’ motions
are by definition motions that are longer than the mean bulge length. Jiménez (1998)
and KA99 both report scales as large as 14δ–20δ, based on examination of various
experimental spectra.

A representative power spectrum of streamwise velocity in turbulent pipe flow
is shown in figure 1(a). Lines indicating −1 and −5/3 power laws are shown for
reference. The same spectrum multiplied by kx and plotted on semi-logarithmic axes
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Figure 1. (a) Power spectrum of streamwise velocity fluctuation. (b) Pre-multiplied power
spectrum of streamwise velocity fluctuation. In (b) two peaks in the spectrum are observed
with corresponding streamwise wavelengths of approximately 7R and 1R, respectively. (Data
acquired as part of the current study, following KA99).

is given in figure 1(b). When plotted in this manner, equal areas under the curve
represent equal energies. The pre-multiplied spectrum has an appearance very similar
to those found in Perry & Abell (1975) and earlier studies. Jiménez (1998) used plots
of this type to identify the beginning and end of the k−1

x range, and he associated
the beginning of the range with the very large scales. KA99 interpreted the shape of
the premultiplied spectra as indicating a bi-modal distribution with the wavelengths
at which the maxima occur representing the very-large-scale motions and the large-
scale motions, respectively. Both studies concluded that the streamwise energetic
modes in turbulent pipe flow have wavelengths that range between 2 and 12–14 pipe
radii, depending mainly on wall-normal location. Hites (1997) found a somewhat
shorter wavelength from the maximum in his pre-multiplied spectrum, λx ∼ 4δ, but
Jiménez (1998) argues that this is due to inadequately long time series distorting the
low-frequency spectrum.

Unfortunately, for almost two decades very large-scale motions have been almost
neglected, despite the availability of clear evidence regarding their significance. One
source of confusion was that there was no commonly accepted definition of large and
very-large-scale motions, nor of turbulent bulges. Therefore a quantitative evaluation
of the energy and the Reynolds stress associated with each scale has not been clearly
established. Indeed, as noted above, the turbulent bulges or ‘large-scale motions’ have
often been interpreted as accounting for the long correlation tails and therefore to
be the ‘large eddies’ discussed by Townsend (1976), with no further distinction from
the VLSM. Only in the last few years have experimental, numerical and theoretical
studies begun to clarify the distinction between these two scales of motion.

For the purposes of present discussion, the wavenumber kxR = 2 will be taken as
the dividing line between the range of VLSM wavenumbers and the range of LSM
wavenumbers. This corresponds to a wavelength of πR, which is slightly longer than
the accepted mean bulge length. This choice is nominal, and the reader might feel that
the value kxR = 1 lies closer to the middle of the wavenumber range separating the
LSM peak and the VLSM peak. However, we shall see later, in conjunction of the
discussion of the net force spectra in figure 9, that kxR = 2 is a slightly better
motivated nominal boundary.
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Numerical studies by Priymak & Miyazaki (1994) for pipe flow with Reynolds
number 4000 found the most energetic mode at y+ = 3 to have wavelength ∼ 25R.
However, in these studies the Kármán number is only 150, and the flow is close
to transition, making interpretation with respect to fully turbulent flow problematic.
Numerical experiments to study large eddies in relatively long channel flow boxes
(8πδ) at fully turbulent Reynolds numbers have been conducted recently by Jiménez,
DelAlamo & Flores (2004) and del Alamo et al. (2004). The former concentrated
on the near-wall layer and the latter concentrated on the outer layer. Super-δ-scale
motions were found in both regions of the long simulation. These studies have been
valuable in providing scaling for the kx, kz spectra and evidence for different behaviour
distinguishing the LSMs and VLSMs.

While there is reasonable agreement on the contribution of large-scale motions to
the turbulent kinetic energy, it is still not entirely clear where and how much those
structures contribute to the Reynolds shear stresses. Originally, Townsend inferred
that large-scale structures in the near-wall region are not ‘active’, in the sense that
they do not significantly contribute to the Reynolds stress. However, pre-multiplied
u, v co-spectra in Krogstad, Antonia & Browne (1992) reveal non-negligible energy
distributions in the low-wavenumber regions, which was also observed in Bradshaw
(1967), who suggested that the activity should extend into the logarithmic layer.
Even as early as 1970 the work of Lawn (1971) found non-negligible u, v co-spectral
density out to 50δ and Blackwelder & Kovasznay (1972) asserted that “the ‘large
eddies’ contribute at least 50 % to the turbulent energy . . . and about 80 % to the
Reynolds stress” at locations in the outer layer.

Liu et al. (2001) report that the 12 POD modes containing half of the kinetic
energy contain two-thirds to three-quarters of the Reynolds shear stress in the outer
region. Jimenez et al. (2004) found that, in the near-wall region, structures longer
than twice the production peak contain more than 50 % of the energy of both the
streamwise velocity component and of the Reynolds stresses. According to KA99, and
consistent with the observations of Perry & Abell (1975) and Bullock et al. (1978), the
contribution to the streamwise velocity component in the outer layer should increase
towards larger scales, with a peak located roughly at y/R = 0.25 � 0.3. Results from
del Alamo et al. (2004) at Reτ = 934 indicate that at one-third of the channel height
h, structures larger than 20h still contribute to the Reynolds stresses.

It is clear that large-scale and very-large-scale structures are quite important with
respect to turbulent quantities such as kinetic energy and Reynolds shear stress, but
that many questions remain open. This work focuses on determining the contribution
of large-scale and very-large-scale motions to the kinetic energy and most importantly
to the Reynolds shear stress in the outer region of turbulent pipe flow. This will be
done by co-spectral analysis using very long records to capture the largest scales of
motion. The primary purpose is to determine the role the large-scale motions play in
the mean momentum budget as a function of location in the turbulent layer. To this
end we will also attempt to evaluate the y-derivative of the co-spectra to determine
if the variation of such large scales can be sufficient to produce a net Reynolds force
in the mean momentum budget.

2. Experimental apparatus
The experiments were performed in a fully developed 127 mm diameter turbulent

pipe flow similar to that used by KA99 and Lekakis (1988). The flow apparatus
consisted of an axial flow blower, appropriate flow conditioning sections, and a
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Data set Reτ ReD UCL [ m s−1] uτ [ m s−1] δν [µm]

I 3815 192 700 22.76 0.99 15.17
II 5884 318 900 37.67 1.39 10.79
III 7959 422 300 49.89 1.86 7.98

Table 1. Summary of experimental data sets used in spectral computations. (Reτ = uτR/ν;
ReD = UCLD/ν; UCL: centreline velocity; uτ : friction velocity; δν: viscous length scale.)

127 mm diameter Plexiglas pipe whose total length-to-diameter ratio was L/D = 120.
The air velocity at the centreline of the pipe could be varied up to 50 m s−1. Velocity
profiles, single-point second-order moments and velocity spectra in this apparatus have
been shown by Lekakis (1988), KA99 and Hommema (2001) to be consistent with
fully developed turbulent pipe flow data of other investigators (Perry & Abell 1975;
Bullock et al. 1978). Additional information regarding the equipment and procedures
used in data acquisition is available in Hommema (2001). The viscous length scale,
δν , and the friction velocity, uτ , are used for inner scaling of flow quantities. The
centreline streamwise velocity, UCL, and pipe radius, R, are used for outer scaling
of flow quantities. The friction velocity was determined from static pressure drop
measurements.

The data presented here were taken in experiments that repeated those described
in Hommema (2001), except that they used a more advanced thermal anemometer
and digitizer that produced more reliable cross-spectral density results. A dual-sensor
hot-film anemometer system, TSI Model IFA 300 with a TSI Model 1241 X-film
probe using 0.02 mm diameter cylindrical films, were used to record time records of
the streamwise and wall-normal velocity. The DC-coupled analogue voltages from the
hot-film sensor were low-pass filtered at 10 kHz, sampled simultaneously at 20 kHz
and stored in records that were 32 768 (215) points long, spanning at least 1.6 s of
real time. The number of such records for each experimental condition varied from
100 to 300. The voltages were converted into velocity components using a cooling
velocity/yaw response calibration. Turbulent fluctuations were defined as deviations
from the record averaged means. Note that the time average from a single realization
was used rather than an ensemble average. Even at the lowest Reynolds number,
a data record of 1.6 s spanned 12.8 m. Using the average velocity from a single
realization to define fluctuations ensured that long-time fluctuations associated with
scales longer than the apparatus and caused by drifts in ambient conditions did
not affect the results. Further discussion of the equipment and procedures used in
the data acquisition is given in Hommema (2001). Three data sets are presented
and their pertinent experimental parameters are summarized in table 1. Each of
the three data sets contained measurements at 8 wall-normal locations in the range
0.05 < y/R < 1.0.

3. Spectral density functions
3.1. Frequency spectral densities and their measurement

We denote the ith component of the turbulent fluctuating velocity by ui(x, y, z, t)
where u1 = u represents the streamwise component and u2 = v represents the wall-
normal component. The mean streamwise velocity is denoted by U (y). We assume all
signals are stationary. The time-delayed one-dimensional cross-correlation is given by

Rij (τ ; y) = 〈ui(x, y, t)u∗
j (x, y, t + τ )〉. (3.1)
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The co-spectrum (cross power spectral density) is defined in terms of this
correlation:

Sij (ω, y) ≡ 1

2π

∫ ∞

−∞
e−jωτRij (τ ; y) dτ, (3.2)

or equivalently,

Rij (τ ; y) =

∫ ∞

−∞
e jωτSij (ω; y) dω. (3.3)

The frequency spectral densities are estimated from a set of M > 100 discrete
records, u

(m)
i (x, y, t), each consisting of N = 32 768 samples where m = 1, 2, . . . , M;

t = to, to + �t, . . . , to + T ; and �t = T/N . The discrete Fourier transform of an
N -point record is given by

F{·} =

N−1∑
α=0

(·)α e−j2πmα/N . (3.4)

Let W (t) be a window function. The discrete Fourier transform of the windowed
signal is given by

F
{
Wu

(m)
I

}
=

N−1∑
α=0

Wαu
(m)
iα e−j2πmα/N . (3.5)

A Hanning (full cosine taper) window was applied to each zero-mean time signal to
suppress the Gibb’s phenomenon at high frequencies. This window caused negligible
distortion of the spectra because the time records were extremely long.

Estimates of the two-sided cross power spectral density were computed using these
discrete Fourier transforms. Given two records ui and uj , and a window W , the cross
power spectral density can be estimated by (Bendat & Piersol 1986)

Ŝij (ω) = c
〈
F{Wu′

i}F∗{Wu′
j }

〉
M

, (3.6)

where c is a constant determined by satisfying

u′
iu

′
j =

∫ ∞

−∞
Ŝij (f ) df, (3.7)

ω = 2πf and 〈〉M denotes the average over the ensemble of M realizations.

3.2. Estimation of wavenumber spectra

Using Taylor’s frozen field hypothesis and a convection velocity Uc, wavenumber
spectra are conventionally approximated in terms of the corresponding frequency
spectra. Consider the cross-correlation with streamwise separation

Rij (rx; y) = 〈ui(x, y, t)uj (x + rx, y, t)〉 (3.8)

=

〈
ui(x, y, t)uj

(
x, y, t − rx

Uc

)〉
(3.9)

= Rij

(
τ = − rx

Uc

; y

)
, (3.10)

since rx = −Ucτ . Here, the co-spectrum is defined as
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Sij (kx; y) ≡ 1

2π

∫ ∞

−∞
e−jkxrx Rij (rx; y) drx (3.11)

=
Uc

2π

∫ ∞

−∞
e jkxUcτRij (τ ; y) dτ (3.12)

= UcSij (ω = kxUc). (3.13)

In general, Sij is a complex number. We will employ Taylor’s hypothesis and the
identity

Sij (k) = S∗
ij (−k) (3.14)

to convert the two-sided estimate given in (3.6) to a one-sided wavenumber co-
spectrum

Φ̂ij (k) = Ŝij (−k) + Ŝij (k) = 2 Re{Ŝij (k)}. (3.15)

Finite-ensemble averages of 〈Φ̂ij (kx)〉M with M > 100 are used to form the final

estimates of the one-sided wavenumber spectra. For brevity we will denote 〈Φ̂ij (kx)〉M

by Φij .
The approximations involved in using Taylor’s hypothesis merit some discussion.

First, as pointed out by KA99 and many earlier authors, Taylor’s hypothesis may
not be accurate for the large scales of interest here. This will not corrupt the present
results unduly since we would expect the time-delayed correlation to decay faster
than the two-point correlation due to the evolution of turbulent eddies as they pass
over the probe. Therefore, wavenumber spectra determined from kx = 2πf/Uc(y) will
reveal less energy at low wavenumbers than the true wavenumber spectrum. Our
accounting of energy in the largest scales will be a conservative estimate. Second, we
will replace the convection velocity with the local mean velocity at the wall-normal
location of interest, Uc =U (y). The main goal of this study is not to present accurate
wavenumber spectra, but to show that a considerable fraction of the Reynolds stress,
including the Reynolds shear stress, comes from the very large scales of motion. For
this purpose, the errors involved with Taylor’s hypothesis and the convection velocity
are not large enough to affect the conclusions.

4. Contribution of large- and very-large-scale motions
The work of KA99 spanned a Reynolds number range 33 800 < ReD < 115 400

and utilized only a single hot wire. This limited their focus to Φuu. In this work, u and
v time records will be used, allowing the examination of co-spectra, and the Reynolds
number will be extended up to ReD > 422 000. Figure 2(a–c) presents the power
spectra Φuu, normalized by the pipe radius and friction velocity, for three Reynolds
numbers. All spectra presented here are finite-record-length estimates. As expected, a
region varying approximately as kx

−1 occurs at all three Reynolds numbers. Only for
the highest wavenumbers are high-frequency noise and/or aliasing due to imperfect
low-pass filter evident.

Analysis of the acoustic modes of the pipe indicate that the resonant frequencies
can be predicted approximately by simple analytic treatments. The relative power
of the acoustic resonance modes was less than 0.14 %. There was no evidence
that the acoustic resonance affected the shape of the broadband spectrum. Thus,
acoustic resonance had little effect on the results or conclusions presented here,
except to contaminate the spectra with a narrow-band peak, in the range 10−1 <

kxR < 100. After removing this peak, the spectra are generally consistent with fully
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Figure 2. Power spectra of streamwise velocity fluctuations, Φuu, versus streamwise wave-
number, kxR. (a) Reτ = 3815; (b) Reτ = 5884; (c) Reτ = 7959. Curves are shown for y/R =
0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.7, increasing in the direction of the arrow. (d) Power spectra
of streamwise velocity fluctuations, Φuu, scaled with y and uτ , following Perry & Abell (1975).
Lines are from the current study at y/R = 0.05 and the following three Reynolds numbers: —,
Reτ = 3815; – –, Reτ = 5884; · · ·, Reτ = 7959. Symbols are data from Morrison et al. (2004):
�, Reτ = 1500, y/R = 0.051, and from Perry & Abell (1975): �, Reτ = 1676, y/R = 0.0934;
�, Reτ = 2340, y/R = 0.043; �, Reτ = 2340, y/R = 0.0645; �, Reτ = 2340, y/R = 0.086;
�, Reτ = 3330, y/R = 0.03; �, Reτ = 3330, y/R = 0.04; �, Reτ = 3330, y/R = 0.08; �,
Reτ = 4810, y/R = 0.03; 
, Reτ = 4810, y/R = 0.05; �, Reτ = 4810, y/R = 0.09.

developed turbulent pipe flow spectra published by others in the wavenumber range
of the acoustic modes. To demonstrate that the present data share common spectral
properties with widely accepted earlier data for pipe flow, selected results from the
region of the log layer are compared to the spectra of Perry & Abell (1975) and
Morrison et al. (2004) in figure 2(d). This is a worst case comparison for our data,
because the X-probe resolution and the sampling rate are both marginal to resolve
the small scales at y/R = 0.05 Consequently, the spectra are attenuated at high
wavenumbers.

Spectra of wall-normal velocity fluctuations are presented in figure 3. The trend
with wall-normal location is similar to that reported for the streamwise velocity
fluctuations, except for the ‘crossing-over’ observed within the range 1 < kxR < 9.
In the low-wavenumber region the energy density increases from the wall to a wall-
normal location y/R = 0.2–0.3, and then decreases again. In the high-wavenumber
region, it always decreases. The spectra are grouped in two separate plots to make
this phenomenon clearer. Lower values of the wall-normal velocity spectra relative to
those of the streamwise velocity spectra reflect the difference in the total energy of
these two components.
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Figure 3. Power spectra of wall-normal velocity fluctuations, Φvv , versus streamwise
wavenumber, kx , for Reτ = 3815 (a, b), Reτ = 5884 (c, d) and Reτ = 7959 (e, f ). The curves
are labelled as in figure 2(a).

4.1. Pre-multiplied spectra

Following KA99 pre-multiplied spectra of the streamwise velocity are used to identify
the wavelengths Λmax associated with the large-scale structures (higher wavenumber
peak) and very-large-scale structures (lower wavenumber peak). The results have been
compiled in figure 4(d) with additional values of Λmax extracted from other turbulent
pipe flow studies, including those of Perry & Abell (1975); Bullock et al. (1978) and
Perry et al. (1986). Data from the entire set of experiments are scattered, but to within
experimental uncertainty the present results agree with the trends and values found in
other experiments. Thus, the occurrence of large-scale and very-large-scale motions is
not a facility-dependent phenomenon. Also, the trends are similar to those found in
direct numerical simulations in long channels by del Alamo et al. (2004), providing
yet more evidence for the universality of the effect. Figure 4(d) improves on the plot
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to very-large-scale motions are shown as large symbols. Smaller wavelengths corresponding
to the large-scale motions are shown as small symbols. Open symbols are from the current
study, �, Reτ = 3815; �, Reτ = 5884; �, Reτ = 7959. Closed triangles are from Kim & Adrian
(1999), �, Reτ = 3175. Remaining closed symbols are from the literature: �, Perry & Abell
(1975); �, Bullock et al. (1978).

found in KA99 by differentiating between the higher and lower wavenumber maxima.
Owing to reduced noise in the spectral measurements, these two peaks can still be
resolved in areas where they appeared to merge in the KA99 spectra. Between the
wall and the middle of the layer, around y/R = 0.5, Λmax/R increases monotonically.
Above y/R = 0.5 a lower wavenumber peak cannot be discerned. For the lowest
Reynolds number, the value of Λmax/R for the VLSM attains a maximum value near
12 at y/R = 0.5.

With increasing ReD the value of Λmax/R for the VLSMs increases slowly to about
16 at y/R = 0.5. The value of Λmax/R for the LSMs varies much less across the layer,
increasing from a small value at the wall to a maximum of about 3 near y/R = 0.5.
KA99 suggested that the structures with wavelengths of approximately 2R–3R are
associated with the organization and streamwise alignment of hairpin vortices into
hairpin packets that ultimately grow to become bulges, since the mean length of the
bulges is known to be of this size. The turbulent bulges found by Kovasznay et al.
(1970) are a phenomenon of the boundary layer, but evidence found since shows that
bulge-like structures also occur in pipes and channels (Fleischmann & Wallace 1984).
For purposes of discussion of the wake region we decided earlier to use kxR = 2,
corresponding to λ = πR, to delimit low wavenumbers (very-large-scale motions)
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Figure 5. Power co-spectra of the streamwise, u, and wall-normal, v, velocity versus streamwise
wavenumber, kx , for Reτ = 3815 (a, b), Reτ = 5884 (c, d) and Reτ = 7959 (e, f ). Lines are
labelled as in figure 2(a).

from high wavenumbers (large-scale and smaller motions). We shall nominally take
λ = πR (kxR = 2) to be the boundary between the large-scale motions and the
main turbulent motions. The exact boundary depends on y, and it can be found by
reference to the spectra.

4.2. Velocity co-spectra

The magnitudes of the complex co-spectra of u and v are plotted versus kx in
figure 5. Non-dimensionalization by R is used to make the y-dependence of the
contributions made by the various scales more explicit. There is a clear dependence
on the wall-normal location, both at high and low wavenumber. The co-spectra
share many similarities with the power spectra shown earlier. Specifically, in the
logarithmic layer, up to y/R = 0.2, they cross over around kxR = 2, corresponding
to the transition from large-scale to very-large-scale motion. Thus, with increasing
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height in the logarithmic layer, the contribution of the very-large-scale motions
increases, while the contributions of the large-scale motions and the main turbulent
motions in the inertial sub-range become smaller. Above y/R = 0.2 the latter trend
continues, and the contribution of the very large scales also decreases monotonically,
as the average value of uv approaches zero at the centreline. Differences observed by
varying Reynolds number are not substantial.

4.3. Cumulative energy distribution

One of the principal questions to be addressed in this paper is the extent to which the
very-large-scale motions and the large-scale motions contribute to the kinetic energy
and the Reynolds shear stress. The contribution of structures with a given range
of scales (wavelengths) to the energetics of the flow is difficult to determine solely
from spectral plots. Instead, we will examine the cumulative energy and Reynolds
stress distribution as a function of streamwise wavenumber, or wavelength. The
information is, of course, contained in the spectral plots presented above and in
many earlier investigations, although the availability of u, v co-spectra with stable,
well-resolved low-wavenumber ranges has been limited. The significant contribution
made by very large scales and the implications of this phenomenon have not, perhaps,
been fully appreciated. The cumulative contribution to uiuj from all wavenumbers
from k = 2π/Λ to infinity is

Υij

(
k =

2π

Λ

)
= 1 −

∫ k

0

Φij (k̃) dk̃∫ ∞

0

Φij (k̃) dk̃

, (4.1)

where the integrals are computed numerically using discrete data,

Υij

(
k =

2π

Λ

)
= 1 −

k∑
0

Φij (k)

kmax∑
0

Φij (k)

. (4.2)

Also, Υij (Λ) is the cumulative contribution of all wavelengths from Λ to 0, and
1 − Υij (Λ) is the contribution from all wavelengths greater than Λ. Interpretation
of the cumulative distributions requires some discussion of the effects of finite
frequency response and spatial resolution of the X-probe. The 10 kHz frequency
response was adequate to resolve streamwise scales greater than 2.27mm = 0.0375R,
3.76mm = 0.0593R and 5mm = 0.079R for the three Reynolds numbers, respectively.
Scales smaller than these values were attenuated by the low-pass filter and by the less
important filtering effect of the 1 mm active length of each hot film. The spectra, and
therefore the cumulative distributions, under-represent the smallest scales of motion.
However, our main concern is with the contributions of the large scales, and for this
purpose the limited frequency response of the data is satisfactory to within an error
equal to the amount the total quantity is underestimated. For the power spectra of
u and v above y/R = 0.1 the maximum attenuation of the total is estimated to be
5–7 %, based on extrapolation to the viscous cut-off. For the Reynolds shear stress
the maximum error is conservatively bounded by 10–20 % at the highest Reynolds
number, and 5–10 % at the lower Reynolds number. This is based on comparison
of the values for u′v′ to the linear variation of total stress at y/R = 0.1–0.2 where
viscous stresses are small. The magnitude and trend in the u′v′ errors are very similar
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Figure 6. Cumulative streamwise kinetic energy fraction, Υuu, associated with structures with
wavelengths less than Λ for Reτ = 3815 (a, b), Reτ = 5884 (c, d) and Reτ = 7959 (e, f ). Lines
are labelled as in figure 2(a).

to those found in Perry & Abell (1975) for comparable Reynolds numbers. While
corrections could be applied to reduce these errors, their magnitudes do not affect
any of the conclusions we shall make, and we prefer to present the data un-amended,
with the proviso that, unlike the large scales, the contributions of the smallest scales
must not be read from the cumulative plots because their small magnitude makes
small errors significant.

Figure 6 presents the cumulative energy fraction of the streamwise velocity
fluctuations as a function of wavelength and y-location. Irrespective of Reynolds
number, more than 65 % of the energy is due to very large scales having wavelengths
longer than 3R and more than 35 % of the energy is contained in wavelengths
longer than 10R. Thus, the very large scales play a surprisingly dominant role in the
turbulence dynamics.

The distribution of the cumulative energy fraction, Υuv , with streamwise scale is
presented in figure 7. Summarizing over all of the y-locations and Reynolds number,
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Figure 7. Cumulative Reynolds stress fraction, Υuv , contained in scales with wavelength less
than Λ/R for Reτ = 3815 (a, b), Reτ = 5884 (c, d) and Reτ = 7959 (e, f ). Curves are labelled
as in figure 2(a).

between 50 % and 60 % of the Reynolds shear stress comes from very-large-scale
motions. This is much larger than expected if these motions were to be considered
inactive in the logarithmic region. Thus, the VLSMs are both energy containing and
stress-active across the entire outer region.

The streamwise wavelength that corresponds to half the cumulative streamwise
energy, (Λ/R)|Υ =0.5, is presented in figure 8(a). Near the centreline of the pipe, half
of the energy is contained in structures with wavelength greater than 3R (i.e. the
VLSMs) and half is due to structures less than 3R in length (the LSMs and smaller).
As the wall is approached, half the streamwise energy is contained in structures of
increasing streamwise extent peaking at 7R, and near the top of the logarithmic layer.

The streamwise scale that corresponds to half the cumulative contribution to the
Reynolds shear stress, (Λ/R)|Υ =0.5 is presented in figure 8(b). Throughout most of the
pipe’s cross-section (y/R > 0.1), half of the Reynolds shear stress is due to structures
with streamwise scale greater than 2R. The trend closely emulates the behaviour of
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in Φuu (a) and to half the cumulative Reynolds stress, (Λ/R)|Υ =0.5, in Φuv (b), versus y.
(�, Reτ = 3815; �, Reτ = 5884; �, Reτ = 7959).

Υuu, figure 8(a). The largest structures contribute most significantly to Φuv between
y/R = 0.2 and 0.3. The distribution of (Λ/R) |Υ =0.5 for Υuv suggests that near the wall,
relatively small structures (Λ ≈ R) are responsible for the majority of the Reynolds
shear stress. Away from the wall, and in the logarithmic layer, larger structures with
scales up to 5R are responsible for the majority of the Reynolds shear stress. This
is the region of the flow where the Q2 ejections of the hairpins dominate over Q4
events (cf. Adrian, Meinhart & Tomkins 2000 and many earlier works on quadrant
analysis).

5. Net force spectra
While turbulence research traditionally focuses on the mechanisms responsible for

Reynolds shear stress, it is actually the y-derivative of u′v′ that appears in the mean
momentum equation for fully developed pipe and channel flow. It represents the net
fictitious force exerted by the Reynolds shear stress. This force may or may not be
significant when the underlying structures are themselves varying slowly in space,
owing to their large size. In terms of the co-spectrum, the derivative is

∂(−u′v′)

∂y
=

∫ ∞

0

∂(−Φuv)

∂y
dkx, (5.1)

showing that the derivative of Φuv represents the spectral contribution to the derivative
of u′v′. We refer to it as the net force spectrum or the derivative spectrum. The pre-
multiplied derivative spectrum has been approximated by finite difference using the
data available at the various y/R locations. The differencing introduces noise, and
the values of �y are not as small as they should be for accurate differencing, but the
results in figure 9 are, revealing nonetheless.

First, with the exception of the spectrum for y/R = 0.15, the derivative is negative
over the entire range of wavenumbers and y/R. These values of y all lie above the
location of the maximum Reynolds shear stress at y+

p = 2Re1/2
τ (Sreenivasan & Sahay

1997). Hence the y-derivative of −u′v′ must be uniformly negative, representing a
retardation of the mean velocity. This is consistent with the integrals of the curves
in figure 9 being negative. Second, the derivative spectra possess two distinct ranges,
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Figure 9. Vertical derivative of pre-multiplied co-spectra, Φuv , for Reτ = 3815 (a), Reτ = 5884
(b) and Reτ = 7959 (c). Note the positive peak in the low-wavenumbers region for y/R = 0.15.

each containing clear minima and separated by a maximum near kxR = 2 − 3.
This behaviour distinguishes the behaviour of the LSM and VLSM eddies even
more prominently than the peaks in the uu-power spectrum. The contribution of
the very-large-scale component is approximately equal to that of the LSM plus the
main turbulent motion at the two highest Reynolds numbers and approximately
half for the lowest Reynolds number. Thus, the VLSMs contribute very significantly
to the net turbulent force that retards the mean velocity above the location of the
maximum Reynolds shear stress. The contribution from the range of wavenumbers
corresponding to the LSMs is relatively weak, while the contribution from the scales
smaller than the LSMs is relatively strong.

The exceptional case in which the contribution of the derivative spectrum becomes
positive occurs in the low-wavenumber range at y/R = 0.15. Since the u, v co-spectra
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may be sensitive to effects of spatial resolution on the phase of the u- and v-signals
(as opposed to the uu- or vv-spectra in which phase plays no role) we have not
presented data below y/R = 0.15. Unfortunately, this does not allow us to explore
the regions closer to the wall to see if this behaviour is characteristic throughout the
logarithmic layer, or how it might change character on the other side of the maximum
in −u′v′. This would be a very interesting topic for future work. At yp the area under
the net force spectrum must vanish, so the spectrum must develop a region of positive
area, and this appears to occur in the wavenumbers corresponding to the VLSMs.
Below yp the derivative-spectrum must become predominantly positive, representing
acceleration of the flow. The positive values at y/R = 0.15 may be the first signs of
this transition to near-wall inner-layer behaviour. It is well-known that the near-wall
layer is accelerated by sweeps of high-momentum fluid. The net force spectra imply
that an important part of these sweeps are these very-large-scale motions.

6. Discussion
As mentioned earlier, KA99 conjectured that the VLSMs consist of a concatenation

of many bulges into a long train, such that the connections of the low-speed streaks
from each bulge appear to be a much longer motion. From the lengths found above,
each VLSM would consist of 2–8 bulges. This notion of building a long structure
from shorter structures has its roots in the autogeneration mechanism by which one
hairpin vortex creates another hairpin which creates another, and so on until a long
packet of hairpins results (Smith et al. 1991; Zhou, Adrian & Balachandar 1996;
Zhou et al. 1999; Adrian et al. 2000). The packets are prevalent in the logarithmic
layer where their growth is consistent with a turbulence length scale proportional to
y. There is evidence that the packets sometimes reach the outer edge of the boundary
layer. The visualizations of Head & Bandyopadhyay (1981) indicate that at least some
bulges are formed by a succession of hairpin vortices, and the mean velocity field
of a bulge (Brown & Thomas 1977) is qualitatively consistent with fields created by
the summation of many hairpins. Particle image velocimetry measurements (Adrian
et al. 2000; Tomkins & Adrian 2003; Ganapathisubramani et al. 2005) support the
picture of packets of hairpins creating long streaks of low-momentum fluid in the
outer layer by lifting low-speed fluid upwards, in much the same way as the near-wall
quasi-streamwise vortices form the near-wall low-speed streaks in the buffer layer. In
essence, the concatenation of hairpins with trailing quasi-streamwise vortices forms
what appears to be a long (but ‘lumpy’) set of quasi-streamwise vortices. Marusic
(2001) shows how a model hairpin packet can account for the long tail of the
longitudinal correlation function. The inclined heads of the hairpins also participate
in the creation of low-momentum backflow, but since they are shorter than the legs
of the hairpins they do not, on average, form connections between hairpins.

It is difficult to observe the very-large-scale motions by visualization or by PIV due
to their great size. However, bulges are readily observed, and there is considerable
evidence for the existence of multiple hairpin packets within bulges (cf. Adrian et al.
2000). Figure 10 presents an example of smoke wire visualization of pipe flow taken
from the work of Lekakis (1988). The flow is left to right, and the smoke wire is
location at y/R = 0.021. In the upper image, looking down on the (x, z)-plane, the
smoke waivers sinuously with a wavelength somewhat greater than 2R. It disperses
before a longer wavelength can be observed. The side view in the middle image
shows the smoke extending up to about 0.2R in the (x, y)-plane, e.g. filling the
logarithmic layer. There are at least two regions, enclosed by boxes (a) and (b) that
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Figure 10. Smoke visualization in the streamwise–wall-normal (x, z)- and (x, y)-planes: note
the large-scale oscillation of the turbulent bulge, consisting of smaller-scale structures aligned
in the streamwise direction. Insets (a) and (b) enclose groups of inclined structures that may
be a packets of hairpins. From Lekakis (1988).

contain patterns of groups of thin, 45◦ inclined structures consistent with the patterns
expected from hairpins. Inspection of the top view of this flow and many other
samples like it indicates that these patterns form along the wavering smoke streak.
The picture is consistent with the smoke streak being a concatenation of hairpin
packets. Time histories of the velocity support this picture. For example, the trace of
u(t) presented in KA99 shows the signature of hairpin packets riding atop the longer
wave of the VLSM.

While the evidence suggests that hairpins concatenate to form packets, and packets
concatenate to form LSMs, there are still no solid observations to prove or disprove
the conjecture that bulges concatenate to form VLSMs. The possibility must be
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left open that some mechanism other than packet dynamics may be at play.
In fact, one interpretation of the significant difference between the scales of the
VLSMs and the LSMs is that they result from different mechanisms. The interesting
recent results on large-scale motions in transitional flow (Hof et al. 2004), and
long, exact travelling wave solutions for low-Reynolds-number pipe flow (Wedin &
Kerswell 2004; Priymak & Miyazaki 2004; Waleffe & Wang 2005) are intriguing
in this regard. While the flows considered in those studies are still far removed
from the high Reynolds numbers considered here, the possibility remains that such
mechanisms or relatives of them can exist in the outer region. Even weak interaction
with the packets could provide an agency to align them and thereby create long
structures.

7. Summary and conclusions
Studies of large-scale and very-large-scale structures have been conducted in the

outer region of fully developed turbulent pipe flow in the range of 192 700 < ReD <

422 300 (roughly 4000 < Reτ < 8000). Pre-multiplied spectra of streamwise velocity
fluctuations reveal very-large-scale energy-containing motions with mean wavelengths
of up to 16R in the logarithmic region of pipe flow, and large-scale motions with mean
wavelengths of 2R–3R throughout the layer. These results are consistent with those of
KA99 and Jiménez (1998) for pipe flow and with del Alamo et al. (2004) for channels.
The very-large-scale motions are not only energetic, but they also contribute a large
fraction of the Reynolds shear stress, Typically, they contain half of the turbulent
kinetic energy of the streamwise component and more than half of the Reynolds shear
stress. Thus, they are both energetic and active. These results are consistent with the
proper orthogonal decomposition analysis of channel flow by Liu et al. (2001), except
that the limited streamwise extent of the latter study aliased the very-long-wavelength
motions in a domain 2.4h long. The present study shows that much of the energy and
the Reynolds shear stress attributed to the lowest-order POD modes in fact reside in
the very-large-scale motions. Spectra of the y-derivatives of the Reynolds shear stress
show that the very-large-scale motions contribute about the same amount to the net
Reynolds shear force, d−u′v′/dy, as the combination of all smaller motions, including
the large-scale motions and the main turbulent motions. Although the main turbulent
motions, defined nominally as those having wavelengths less than 0.2R, contribute
relatively little to the total Reynolds shear stress, they are important elements of
the net Reynolds shear force. The clear spectral peak that characterizes the VLSMs
suggests a periodic oscillation in the streamwise direction that is observed in flow
visualization images, cf. figure 10. The images give clear evidence of the succession
of inclined (presumably hairpin) vortices forming streaks. The oscillation of low-
speed streaks formed by coherent alignment and induction may be the result of an
instability similar to that described by Waleffe (1997), or it may be a consequence of
the processes that create the alignment, similar to the way hairpins autogenerate to
create alignment within packets. The length of the large-scale structures grows with
distance from the wall at a rate that is roughly linear in the logarithmic layer, but
slower in the wake region. Linear growth in the logarithmic layer is consistent with
the relationship λ2

z ∝ yλx (del Alamo et al. 2004) if one assumes that λz ∝ y, as found
by Tomkins & Adrian (2003).

It is, perhaps, worthwhile to speculate on two possible ramifications of the dominant
role played by the very large scales in wall turbulence. First, the very-large-scale
motions are hardly local, and they are not therefore amenable to being represented
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by gradient transport models. Following a suggestion in Hinze (1975) it would
perhaps be better to separate the model of the total Reynolds stress into a small-
scale component that is amenable to modelling with a gradient transport concept,
and a very-large-scale component that cannot be statistically modelled because it
is sensitive to boundary conditions and flow geometry. This component should
be computed. Of course, large-eddy simulation does exactly this, but it might be
possible to exploit the extremely large scale of the VLSMs to perform computations
using unsteady three-dimensional Reynolds-averaged Navier–Stokes models with
empirical transport coefficients suitably adjusted to remove the contribution of the
VLSM.

Second, the very-large-scale motions may only exist in fully developed flows like
pipe and channel flow or in slowly developing or equilibrium boundary layers. If
the alignment mechanism is weak, and if the development is too fast or disturbed,
long structures may not form. Without the alignment, coherent stress vanishes and
the total stress may be altered, providing another reason to compute these motions
instead of modeling them statistically.
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